Fifth Annual Conference on Carbon Capture & Sequestration

Steps Toward Deployment

Regulatory Analysis Session 3-C

Acid Gas Injection in the United States

J. Kenneth Klewicki, *The Cadmus Group*; Bruce Kobelski, *USEPA Office of Ground Water and Drinking Water*; Anhar Karimjee, *USEPA Climate Change Division; and* Chi Ho Sham, *The Cadmus Group*

May 8-11, 2006 • Hilton Alexandria Mark Center • Alexandria, Virginia

Overview

- Definition of acid gas injection
- Purpose and methods of research
- Findings
 - Acid gas injection projects in U.S. and Canada
 - Regulatory requirements
 - Similarities and differences between acid gas injection and geologic sequestration of CO2
- Conclusion and next steps

Acid Gas – A Brief Definition

- Acid Gas is a mixture of gaseous impurities which must be removed (via amine absorption) from natural gas or oil before it can be transported
 - Generally no longer acceptable to discharge ("flare") to the atmosphere
 - Reclaiming sulfur is no longer economically viable
- "Acid" because it is largely hydrogen sulfide and carbon dioxide
- Acid gas is often compressed then disposed via underground injection

Purpose of Research

- Acid gas injection provides a technical and regulatory analogue for geologic sequestration of CO₂
- Although acid gas injection has been well documented in Canada, there are few detailed studies of acid gas injection projects and regulatory requirements in the U.S.
- Goals of Project
 - Determine the extent of acid gas injection in the U.S.
 - Evaluate data availability, quality and relevance for future geologic sequestration projects
 - Compare regulatory requirements across States and between the U.S. and Canada to find potential regulatory models and identify any regulatory gaps

Research Methods

- Inquiries to States and EPA Regions where acid gas injection is occurring (identified by IOGCC)
 - Information requested
 - Number of wells involved in acid gas injection
 - Data on acid gas injected: volumes, gas composition, injection rates
 - Well data: location, depth, operating status, and target formations
 - Purpose of acid gas injection (disposal or EOR)
 - Regulatory requirements for acid gas injection
- Literature searches were used to provide additional information

State Responses

- 3 States (TX, WY, ND) and 1 EPA Region (for MI) have responded, 1 (NM) still collecting data, 1 (OK) did not respond
- Quantity and quality of the data varies widely
 - TX provided a "data dump" of all wells permitted for hydrogen sulfide
 - WY provided list of disposal wells and electronic access to permits and well records
 - ND provided injection rate, total volume injected, gas composition and permit conditions
 - Region 5 (for MI) provided injection rate, gas composition, and permit conditions
- One site in Utah was identified through literature review
- It was not always possible to distinguish the purpose of the wells from the data provided

Acid Gas Injection in the U.S. (2004-2005)

- 32 sites with 68 wells
- Only wells injecting a gas component were included (many wells inject liquid & gas)
- Texas and Wyoming have the largest numbers
- Range from very small (e.g., $21 \text{ m}^3/\text{d}$) to very large (e.g., $> 2,000,000 \text{ m}^3/\text{d}$)
- Data are recorded though not always easy to obtain

Comparison of U.S. and Canadian Acid Gas Injection Operations

	Injection Depth (m)	Injection Rate (m³/d)	Injection Pressure (kPa)	Gas Composition (%H ₂ S/%CO ₂)
U.S. Avg Min - Max	1,813 630 – 5,420	313,410* 21 – 2,265,400*	19,848 1,480 – 34,575	40/53 4/64 – 76/13
Canada Avg Min - Max	1,744 705 – 2,918	93,200 2,800 – 900,000	19,313 5,915 – 111,292	42/52 1/31 – 85/15

^{*} The LaBarge facility in WY is much larger than all existing U.S. and Canadian facilities and skews the U.S. average to higher than the Canadian average.

U.S. Regulatory Requirements for AGI Wells

- Generally regulated under the Safe Drinking Water Act's Underground Injection Control Program as Class II wells
- Permitting considerations
 - Injectate properties
 - Reservoir properties (fracture pressure)
 - Wells in Area of Review
 - Well logs, site maps
- Monitoring requirements
 - Injection pressure, flow rate, volume
 - Fluid composition
 - Annulus pressure, annulus liquid loss
 - Mechanical Integrity Testing every 5 years
- Individual States with primary enforcement authority (primacy) may set their own requirements

Comparison of U.S. and Canadian Regulatory Requirements for AGI Wells

- Permit application requirements are generally similar, but Canada requires more information
- U.S. does not generally require
 - Analyses of reactions of acid gas with geologic formation
 - Studies of acid gas migration
 - Calculation of gas properties
- U.S. requires reporting of volume injected, while Canada collects data on mass injected

Comparison of Acid Gas Injection and Geologic Sequestration of CO₂

Similarities

- Objective for both is long-term isolation
- Equipment and processed involved
- Receiving formations and depths
- Gas properties
- Modeling tools and methods

Differences

- Size and scale of operations (acid gas volumes are much lower)
- Composition of Gas (sequestered CO₂ will be purer, i.e., contain less sulfur and therefore be less toxic)
- Monitoring and verification requirements to meet climate change mitigation goals

Conclusions

- Acid gas injection is a good analogue for geologic sequestration in terms of equipment design and target reservoirs; however, the anticipated scale of implementation and overall project goals differ
- Carbon dioxide sequestration may require a more unified regulatory framework risks may differ
- Data on acid gas injection wells are collected by EPA and States but are not consistent or easily retrievable
- Cooperation with industry could provide useful historical information which is not publicly available (e.g. corrosion rates, gas composition)

Possible Next Steps

- Further data collection
 - Complete data collection from all States with AGI
 - Obtain additional information from States that responded
 - Possibly request relevant data from industry
- Study corrosion rates and well integrity in acid gas injection wells
- Study acid gas plume migration to understand behavior of CO₂ in the subsurface
- Documentation of any leaks or contamination incidents